
An Artificial Intelligence system to help the player of Real-Time Strategy games

Renato L. de Freitas Cunha Luiz Chaimowicz
Departamento de Ciência da Computação

Instituto de Ciências Exatas
Universidade Federal de Minas Gerais

Abstract

Real Time Strategy (RTS) games pose a series of challenges to
players and AI Agents due to its dynamical, distributed and multi-
objective fashion. In this paper, we propose and develop an Artificial
Intelligence (AI) system that helps the player during the game, giving
him tactical and strategical tips about the best actions to be taken
according to the current game state with the objective of improving
the player’s performance. We describe the main features of the
system, its implementation and perform experiments using a real
game to evaluate its effectiveness.

Keywords:: Real-time Strategy, Artificial Intelligence

Author’s Contact:

renato@renatocunha.com
chaimo@dcc.ufmg.br

1 Introduction

Real Time Strategy (RTS) games have become one of the most suc-
cessful genres in the game industry. In these games, players have to
manage a limited set of resources to achieve a particular goal. Nor-
mally, RTS games are played at an extremely fast pace and players
have to deal simultaneously with several different objectives such
as collect resources, construct bases, improve technology and battle
against enemy armies. The real time, distributed, multi-objective
characteristics of RTS Games make its gameplay very challenging,
especially for novice players.

In this paper, we propose and develop an Artificial Intelligence (AI)
system that helps the player during the game, giving him tactical and
strategical tips about the best actions to be taken according to the
current game state. The system evaluates the game state following
pre-specified metrics, elaborates hypotheses on how to improve the
player’s performance and communicates this information to him
formatted as a set of strategy tips. The information used by the
system is the same available to the player, i.e., it does not use any
internal or privileged information when analyzing the game state. In
other words, no cheating is allowed! The system can be considered
like an experienced player that plays alongside the user. The main
objective is to improve player performance during the game, helping
him in dealing with the fast paced dynamics of RTS games.

The system was implemented in Stratagus, one of the most used
open-source engines for RTS games. We developed an expert system
using decision trees that were built based on knowledge available in
strategy guides developed for RTS games. The engine was instru-
mented to infer the game state and give strategic and tactical hints
to the player based on the decision tree. To evaluate the system,
we performed a series of experiments with players using Wargus, a
clone of Warcraft II implemented using Stratagus.

The remainder of this paper is organized as follows: the next section
presents some related works in the field. Section 3 discusses the
main features of RTS gameplay and the competencies that a player
must have to master this kind of game. In section 4, we present the
overall design of our system, discussing the main game strategies
included in the expert system. Section 5 describes the main reasons
for choosing Stratagus over ORTS, another commonly used RTS
open-source engine. The instrumentation performed on the engine
to implement the system is discussed in section 6. Finally, section
7 presents the experiments performed to evaluate the system while
section 8 presents the conclusions and directions for future work.

2 Related work

RTS Games are very good testbeds for Artificial Intelligence (AI)
algorithms. As discussed in [Buro 2004], the characteristics of RTS
Games require the development of algorithms that deal with temporal
and spacial reasoning, uncertainty planning, learning, and opponent
modeling. Moreover, the algorithms have to cope with the dynamics
and time constraints of the RTS games. Thus, in the last few years,
several works have explored different aspects of AI in RTS Games.
For example, the use of traditional planning approaches such as
PDDL, SHOP and HTN [Alcázar et al. 2008; Lee-Urban et al. 2007;
Hoang et al. 2005] for strategic planning, the implementation of
evolutionary techniques for generating tactics [Ponsen et al. 2006],
the use of multi-agent potential fields for path planning and unit
control [Hagelbäck and Johansson 2008] and the use of different
learning approaches for opponent modeling and strategy prediction
[Baumgarten et al. 2009; Weber and Mateas 2009].

In spite of the large number of works exploring AI algorithms in RTS
games (a more complete overview can be found in [de Freitas Cunha
2010]), the great majority focuses on the development of intelligent
agents to play autonomously against the human player. In this
paper we go in the opposite direction: we develop an AI system that
plays alongside the player, analyzing the game state and displaying
strategic tips that helps improving his/her performance. Very few
works explore this type of approach. Two examples in commercial
games are the tutorial system present in games such as Warcraft III,
that helps the novice user to learn the basics of the game mechanics
(not strategy or tactics) during a tutorial campaign and the board
of advisors in the SimCity series, that gives some generic advice
of the best actions to keep the city into a positive growth. Thus,
we believe that the development of an AI advisory system for RTS
games, that takes into account some of the complex characteristics
of its gameplay, may be an important contribution to this field.

3 RTS Gameplay

To develop an advisory system for an RTS game, it it is necessary to
understand the various aspects involved in its general gameplay. In
this section we discuss the main competencies that are required for
a good RTS game player. Despite the large number of different RTS
games available, most of these competencies are common among
them.

In RTS games the players engage in military combat to guarantee the
supremacy of a 2D map. Because of that, there is the need to build
an army with varying sizes whose utmost objective is to destroy the
enemy forces. To maintain their armies, the players must engage
in other activities, like resource extraction and management, and
technological research. We believe that mastering all the activities
involved in RTS gameplay is essential for any agent to become an
expert in the game: one not only need to elaborate strategies to
win, but also must pay attention to the various aspects of the game,
like managing his own resources and replanning accordingly as new
knowledge about the world is gathered.

Figure 1 shows, in the format of a mind map, a division of the
competencies a player / AI agent needs to be good at RTS games.
The competencies are directly connected to the central concept
and the interaction between them are shown as gray lines in the
background. Even though the strategic competence is directly related
to all the others, this relationship was suppressed in the figure for
simplification purposes. This competency classification is based on
the design of the bot found in [McCoy and Mateas 2008], and will
be briefly presented in the following paragraphs.

It is important to note that different players are better at different

mailto:renato@renatocunha.com
mailto:chaimo@dcc.ufmg.br

RTS player
competencies

Diplomacy

Resource
extraction

ProductionScouting

Tactics

Strategy

Figure 1: Mind map showing the various competencies one is ex-
pected to find in a good RTS player. The straight lines connecting
concepts indicate there is some kind of relationship between them.

aspects of the game and, usually, being good at some key aspects,
like combat tactics and resource management can give a player some
advantage, even with him being not so good at other aspects.

3.1 Strategy

Strategy can be defined as the highest level of decisions that might
be taken for one to achieve an objective. In the game, its role is to
define what the player will do to achieve his objective. Strategies
can vary during the game. The reason for that is that players will
gradually gather information about their environments, and might
need to adapt their strategies based on that information.

3.2 Tactics

Tactics handle the layout and maneuvers of troops during combat
or in its imminence. This concept also involves the analysis of
the surrounding environment to decide how to achieve a player’s
objectives. Unit micromanagement, which is a way to “fine tune”
the behavior of individual units to perform optimally is also part of
this competence.

3.3 Resource extraction

Resource extraction management is essential in an RTS game, be-
cause most resources are not renewable and are usually scattered
along the map, meaning any player willing to extract them will be
able to do so. Resources are needed to create units and buildings
and to research technological upgrades. Because of their importance
in a game, a player is required to balance their resource extraction
with their investment in the army.

3.4 Production

Production management in RTS games is responsible for unit train-
ing, building construction, and technological research. Through the
management of the production chain, it is possible to fulfill some
strategic requirements. Knowing the requirements between the di-
verse technologies in a game, a player can sort the build order of his
units to achieve a strategic objective faster. To exemplify, consider
the technological graph shown in figure 2. In the figure, knowing
that “Archers” are important to his strategy, a player can optimize
the construction order of his units to achieve “Middle Ages” earlier
in a game.

3.5 Scouting

Scouting is essential in RTS games because resources are non-
renewable, thus it is necessary to keep searching for new sources
of resources to maintain an army’s productive chain. Additionally,
exploiting more resources simultaneously helps in the development
of the army by providing resources at an increased rate. It is also

Barracks

PikemanArcherFootman

Lumber Mill

Peasant Middle Ages

Figure 2: Minimal technological graph that represents the depen-
dencies between technologies of a synthetic RTS game.

important to know where the enemy bases are located to plan an
effective attack and to help inferring where the enemy attacks will
come from.

3.6 Diplomacy

Even though complex diplomacy is not a feature of many RTS games,
it is present at online matches, represented by the creation and
destruction of military alliances, resource exchange, and unofficial
rules defined by players at the moment of the game setup. As the
objective of online matches is usually to destroy all enemy armies,
knowing when to propose and to break an alliance is an important
aspect of gameplay that players should have.

4 Overall design

Knowing what characteristics an RTS player must master, we can
start describing the design of the advisory system. The main idea is
to use the knowledge found in strategy guides developed specifically
for RTS games to develop an expert system able to help the player to
learn the game faster. The steps taken to develop our system were:

1. Prospect the most used RTS game engines and choose one to
implement the system;

2. Specify the tips to be used by the system based on the strategy
guides;

3. Instrument the engine’s code to work with the tip system;

4. Implement a subsystem to collect data about the state of the
game;

5. Build and implement a decision tree encoding the tips;

6. Do tests to evaluate the system.

The discussion about the selection of the engine will be postponed
until the next section. In this section we will describe the other
aspects of the design.

For reasons that will be made clear in the next section, we imple-
mented our system using Wargus, a Warcraft II clone that runs in
the Stratagus engine. So, to implement the tip system, we decided
to study Warcraft II’s strategy guide [Blizzard 2010]. Being Wargus
a Warcraft II clone, the rules and strategies developed for that game
can be applied to Wargus.

In particular, some items were used as source of inspiration to create
our knowledge base:

Workers are the key for development: the basic working units
are responsible for assembling the whole game production
chain. Therefore, they are the most important units in a game
and are the key to victory.

The more workers, the better: unless the players are in a map
with few gold sources, the more workers, the better, because
that will increase the resource income ratio to maintain the
production steady.

Train workers continuously: specially in the beginning of the
game, it is important for the player to not wait for resources

Table 1: Comparison of ORTS’s and Stratagus’ features.

ORTS Stratagus

Successful implementation of the proposed task % !

Full RTS games % !

Documented code % !

Documented scripting language % !

High-level control of units % !

Low-level control of units ! %

Clear separation between AI and engine code ! %

Reference documentation ! !

Open source ! !

when building the initial base. Any delay in the beginning can
mean defeat in the most advanced stages of the game.

Balance your gold and wood income ratios: in games like War-
gus, a player needs to use both gold and wood to develop his
army (and oil in water maps). Thus, it is important for the
player to have both resources available, otherwise, his devel-
opment will stale.

Scouting the environment is the key to victory: to react to the
enemy’s moves, one needs to know what the enemy is do-
ing. This leads to scouting the map, one of the most important
activities in the game.

Early-game order of construction: a common practice in board
games like chess and checkers is to document standard open-
ing and ending strategies to achieve good performance in the
game. This is no different in RTS games, where players have
cataloged the order in which a player have to build his con-
structions to have some structures as soon as possible in the
game. Learning some of these orderings is essential to defeat
expert players, and to guarantee the victory.

5 Engine selection

During the prospection phase, it was clear that most researchers
in the RTS field were using either the Open Real Time Strategy
(ORTS) engine or the Stratagus engine, with this last one commonly
combined to the Wargus game. Therefore, these were the ones we
chose to evaluate. In this section we will present the conclusions that
we came to after evaluating these two engines and some suggestions
on where these engines could improve.

Stratagus, best described in [Ponsen et al. 2005], is an open-source
engine for building RTS games that supports both single player
and multi player games. Stratagus was originally created as a War-
craft II clone and then grew to become a generic RTS game engine.
Even though it was not created with an academic focus, it has been
successfully used in AI research.

ORTS is also an open-source engine for building RTS games. Origi-
nally created to provide a hack-free RTS environment [Buro 2002],
ORTS has also been used successfully in research. One of the key
features of ORTS is that it uses a client-server model, in which only
the server runs the game simulation and, consequently, prevents
players from using map-revealing hacks.

To properly evaluate the value of both engines to our research, we
decided to implement a simple task in them. The task we set was to
implement influence maps to perform some map analysis activities.

While performing this task, we realized that even though ORTS
already had some terrain analysis primitives, the lack of proper
documentation made those barely usable to us. With Stratagus,
although there was no initial support for influence maps, we were
able to implement them without trouble.

An important aspect that is oftentimes overlooked when selecting
an engine is the legibility and ease of editing of the engine’s source
code. Even though the sources of both engines are easily accessible,
Stratagus feels like having more orthogonal and documented APIs,
probably because it has been in development for more time than

ORTS. The effect of ORTS’s lack of documentation is that users of
the engine tend to spend more time reading the code to figure out
how it works.

Another important aspect is the scripting language used by the en-
gine. While Stratagus uses Lua, a de facto standard for scripting
in games, ORTS used, at the time of our evaluation, a mostly un-
documented, home-brew scripting language. Again, the lack of
documentation of this home-brew language makes ORTS a disser-
vice, making the engine usage harder than it should.

With regards to the standard AI, Stratagus comes with the units’
basic behavior already implemented, but access to lower level be-
haviors is denied to users, who are left with no ability to control all
aspects of the AI without modifying the engine directly. ORTS’s
approach is equally problematic, because it only provides rather
low-level controls, which means the user must program the most
basic behaviors of the units before focusing in actually solving his
problem. The ideal compromise in this question would be if engines
could provide basic behaviors that could be overridden if needed.

In addition to the basic unit behavior, Stratagus also comes with
some bot strategies implemented, which leverages the creation of
single-player games and, perhaps for that reason, Stratagus also
has some full RTS games implemented for it, making it a good
platform for experimentation. This gives Stratagus a clear advan-
tage over ORTS, which only had some “synthetic” games created
for its AI competition: collaborative pathfinding, strategic combat,
tactical combat and a minimal full RTS game. For the reasons
aforementioned, we opted for using Stratagus in our work. Table 1
summarizes the information found in this section.

5.1 Wargus

Having selected Stratagus as our evaluation platform, we decided to
base our system on the Wargus game rules. The main reason behind
this decision is the fact that there are strategy guides written for
Warcraft II, from where we could extract expert information. Since
Warcraft II rules were used, it is worth defining some of the game’s
aspects for a better understanding of this paper.

Wargus is a Real-Time Strategy game set in the mythical kingdom
of Azeroth. In this game, players are given the task of maintaining
a thriving economy while building an army with which to destroy
the enemy. There are two major races in Wargus from where the
players can choose: humans, and orcs, a humanoid green-skinned
race with broad noses and distinctive tusks. In this world, both races
have access to melee, ranged, naval, aerial and spellcaster units.

Wargus allows users to play against AI opponents in separate human
and orc campaigns and in stand-alone scenarios. The main objective
of stand-alone scenarios is to destroy the player’s opponents, and
most campaign missions follow the pattern of collecting resources,
building a base and units to, then, destroy the opponents. Other cam-
paign missions feature specific objectives, such as rescuing troops, or
escorting important characters through enemy territory. Regarding
the game start conditions, in stand-alone scenario missions, players
usually start the game with only a city center, (a “Town Hall” for
the human race or a “Great Hall” for the orc race,) and a few worker
units. Campaign missions, on the other hand, have different start
conditions which depend on the story of that particular mission.

In Wargus, there are two essential resources that must be collected:
gold, dug from gold mines, and wood, chopped from forests found
in the game. Both resources are harvested by basic worker units,
named “Peasant” in the human race and “Peon” in the orc race.
These resources are delivered in the specific city centers of each
race. Wood can also be delivered in lumber mills. Both wood and
gold are required for the construction of most of the game’s units
and buildings. There is an additional resource in the game: oil,
extracted from oil platforms in the sea. Oil can be considered a
non-essential resource because it is only needed for the construction
of water-related units and buildings.

Resources gathered, players can construct buildings and train units
to build their armies. In the beginning of a match, only basic melee
units can be trained in “Barracks”. With the construction of new
building types and the research of new technologies, new units, such
as ranged and heavy melee units can be trained in the “Barracks”.
This pattern repeats throughout all games: every time a new building
is constructed, there is the potential of unlocking a new unit unit.
This unit will either be trained in an existing building or in the newly
built one. As an example, as soon as a human builds an “Elven
Lumber Mill”, “Elven Archers” are unlocked and can be trained in
a “Barracks”. But when a “Gryphon Aviary” is built, the training
of new “Gryphon Riders” will become available at the “Gryphon
Aviary”.

6 Engine instrumentation

As Stratagus is more geared towards traditional RTS games and runs
as a monolithic block, we had to adapt its code to extract information
from the game state and to notify the user with the tips generated by
the system. After studying its code, we came to the conclusion that
hooking our functions to the engine’s main loop would do what we
needed without disrupting the operation of the engine. Specifically,
our additions to the engine were: 1) an information-gathering system
that scanned the engine data structures and cached them to be used
by 2) the advisory system, that processed the game data and notified
the user via the 3) notification system.

Recall that our system only uses the same kind of information that is
available to the human player. Therefore, the information-gathering
system must apply a filter to the game state data to remove all the
information that would not be available to the human player before
passing that data to the advisory system. The advisory system pro-
cessing step just executes the encoded decision trees and, depending
on the conclusion it comes to, a call to the notification system is
made.

A minimalistic callback system was added to the construction be-
haviors in the engine to enable the system to know when a new unit
was ready in case of processing the early-game building orders.

6.1 Information gathering

The basic data collection process is shown in algorithm 1. To make
the notation more compact, set theory notation is used in the algo-
rithm. These operations can be easily implemented in programming
languages that support list comprehensions or can be easily trans-
lated to traditional for loops. The call to ResetLocalState is
described in algorithm 2. The algorithms also make use of Iverson
bracket, a notation that denotes a number that is one if the expression
inside square brackets is satisfied and zero otherwise, as shown in
equation (1).

[P] =

{
1 if P true,
0 otherwise

(1)

Algorithm 1 also references IsLatticeBuilding(). One can
understand this as a function that returns True if a Wargus unit
belongs to the set formed by the units displayed in Figure 3.

Figure 3 shows an abstraction of the game state used in this work.
In it, it is assumed that the technological development of a player

Require: Stratagus player data structures
Ensure: Advisory system’s current state updated

1: ResetLocalState()
2: Workers← {w | w ∈ PlayerU ∧ IsWorker(w)}
3: VisibleE← {e | e ∈ Units ∧ IsVisible(e) ∧ IsEnemy(e)}
4: Newenemies← (VisibleE \ (Knownenemies ∩ VisibleE))
5: Knownenemies← Knownenemies ∪ Newenemies
6: Goldmines← {g | g ∈ Units ∧ IsVisible(g) ∧ IsMine(e)}
7: IdleW← {w | w ∈Workers ∧ IsIdle(w) ∧ IsRemoved(w)}
8: Totalworkers←| Workers |
9: Newgoldmines← Goldmines \ Oldgoldmines

10: Numtowers←| {t | t ∈ PlayerU ∧ IsTower(t)} |
11: Goldpotential← sum({GoldLeft(g)| g ∈ Goldmines})
12: Buildings← {b | b ∈ PlayerU ∧ IsLatticeBuilding(b)}
13: Castlestage← [(“Castle” ∈ PlayerU) ∨ (“Fortress” ∈ PlayerU)]

Algorithm 1: Update stage of the advisory system. In this algorithm
it is assumed that there exists a sum algorithm, capable of summing
all the values of elements contained in a set. There are also used
Iverson brackets, described in equation (1), and operations for
selecting a set’s element. ResetLocalState() is described in
algorithm 2.

Table 2: Naming convention used in figure 3. The first column shows
the abbreviation used in the figure. In the second and third columns
are shown the equivalent building names for each race of the game.

Race

Convention Human Orc

Ap Gryphon Aviary Dragon Roost
Ba Barracks Barracks
Bs Blacksmith Blacksmith
Ca Castle Fortress
Kp Keep Stronghold
Lm Elven Lumber Mill Troll Lumber Mill
Mt Mage Tower Temple of the Damned
Th Town Hall Great Hall
Tm Church Altar of Storms
St Stables Ogre Mound

is a function of the different building types he has constructed. A
consequence of this approach is that, every time a new building is
constructed, a player’s state is changed. This abstraction makes the
game state space more tractable and simplifies the reasoning process.
The naming convention used in figure 3 is shown on table 2. This
abstraction is based on the one presented in [Ponsen et al. 2006].

The states shown in figure 3 were grouped in a way that divided the
technological development of a player in four groups: an early-game
stage, where the player has a very minimal base consisting of a Town
Hall and a Barracks or less; a base construction stage, where the
player is building his base and preparing the foundations to expand
it; a middle-advanced stage where new and advanced units become
available and, finally, an advanced, or “Castle” stage, in which a
player already owns the most advanced city center (“Castle” for
humans or “Fortress” for orcs) and, thus, has gradual access to all of
the game’s units and to complex unit combinations.

It is important to note that not all building types were used to con-
struct the abstraction shown in figure 3. This is due to the fact that
they are either required during all the game, such as farms, that must
exist to provide food to the army and to permit the training of new
units, or not entirely important for a match, such as towers, defen-
sive buildings unable to move in the map or water-related buildings,
which are only important in sea maps.

1
Th, Ba

2
Th, Ba, Lm

3
Th, Ba, Bs

4
Kp, Ba

5
Th, Ba, Lm,

Bs

6
Kp, Ba, Lm

7
Kp, Ba, Bs

8
Kp, Ba, St

9
Kp, Ba, Lm,

Bs

10
Kp, Ba, Lm,

St

11
Kp, Ba, Bs, St

12
Kp, Ba, Lm,

Bs, St

13
Ca, Ba, Lm,

Bs, St

14
Ca, Ba, Lm,
Bs, St, Ap

15
Ca, Ba, Lm,
Bs, St, Mt

16
Ca, Ba, Lm,
Bs, St, Tm

17
Ca, Ba, Lm,

Bs, St, Ap, Mt

18
Ca, Ba, Lm,

Bs, St, Ap, Tm

19
Ca, Ba, Lm,

Bs, St, Mt, Tm

20
Ca, Ba, Lm,
Bs, St, Ap,

Mt, Tm

E
arly

gam
e

B
ase

construction
M

iddle-advanced
C

astle

Figure 3: Abstraction of the Wargus game state. In this figure, state
transitions are triggered by the construction of a new building, and
each state is defined by the types of buildings already built. The
naming conventions are described in table 2.

1 void CheckGoldThreshold() {
2 string msg = "Explore the map to find gold mines.";
3 if(PlayerData.goldPotential < GOLD_THRESHOLD) {
4 notifier.Notify(msg);
5 PlayerData.shouldScout = true;
6 }
7 }
8 // ...
9 void HandleIdleWorkers() {

10 if(GameCycle - LastWarning > IDLE_WORKERS_COOLDOWN) {
11 string msg = "You have idle workers.";
12 if(PlayerData.shouldScout) {
13 msg+=" What about using them to explore the map?";
14 }
15 // ...
16 notifier.Notify(msg);
17 LastWarning = GameCycle;
18 }
19 }

Figure 4: Two excerpts from the coded expert rules. In the func-
tion CheckGoldThreshold, the system checks the amount of
available gold mines and the remaining gold in them and stores it
in the goldPotential variable. Whenever the gold potential reaches
a low value, the system warns the player to explore the map. The
HandleIdleWorkers function is called by the system whenever
it finds idle worker units. In that case, one of the checks made by
that function is if the player should explore the map. In positive
case, the player is notified of that, with the advice of using the
idle workers to explore the map. The IDLE WORKERS COOLDOWN
variable is a configurable parameter of the system that defines
the interval in which the check for idle workers should be done.
GOLD THRESHOLD is also a configurable parameter, but it defines
how much gold should be considered low by its corresponding func-
tion.

Require: Advisory system data structures
Ensure: Updated advisory system data structures

1: Buildings← {∅}
2: IdleW← {∅}
3: Newgoldmines← {∅}
4: Oldgoldmines← {∅}
5: Shouldchop← false
6: Shouldmine← false
7: Shouldscout← false
8: Toomanytowers← false
9: Totalworkers← 0

10: Goldpotential← 0
11: VisibleE← {∅}
12: Allies← Listofallies()
13: Enemies← Listofenemies()
14: Oldgoldmines← Goldmines
15: Oldenemies← Enemies

Algorithm 2: ResetLocalState, algorithm that clears the data
structures used by the advisory system.

6.2 Advisory system

The general guidelines presented in section 4 were encoded as a
decision tree that considered some other aspects of the game, such as
the time spent by the player since the beginning of the game and the
constraints the player might have to follow those guidelines. Also,
having a decision tree executed at every frame would result in the
execution of the same actions until the state of the game is changed.
To overcome this limitation, some actions were encoded to record
the time they were last activated (as shown in lines 10 and 17 of
figure 4). Together with nodes that checked for a timeout before
recursing some branches, this simple system implemented a way of
preventing constant execution of the same actions until the game
state is changed. As one might expect, tuning the time parameters
was needed to make the tree behave in a suitable way for execution.

Figure 4 shows an example of expert rules that were encoded for
the usage of the advisory system. The figure shows two of the many
functions defined in the system to handle the various rules described
in section 4. The functions shown in the figure defined, respectively,
a check for the gold extraction potential a player has and a function
to handle idle workers when they are found. The purpose of the
latter is that neither Wargus nor Warcraft II warn the player when he
has idle workers. As the workers are essential for the development
of an army, the advisory system not only checks if there are idle
workers, but also tries to suggest what to do with these workers, such
as exploring the map for more resources or allocating them to do
other tasks.

6.3 Notification system

As a design decision, we defined that the messages displayed to the
user would be made available in three ways: via the default noti-
fication interface provided by the engine, via a logging subsystem
that cached all the messages shown in that game and via a speech
synthesis system.

Being Stratagus a single-threaded application, the speech synthesis
was made in a separate process. To synthesize the voice, we used
the Festival [Black and Taylor 1997] Text-to-speech (TTS) system.
By the premise that synthesizing all messages generated by the
system would be boring to the player, we only synthesized the ones
we considered important. Independent of the voice synthesis, all
messages were rendered on-screen. Figure 5 shows how they looked
for the user. In the figure, lines rendered in yellow were generated
by the game, while lines in white were generated by the advisory
system.

Figure 5: Screenshot of the Wargus game with the notification
system enabled. In the figure, the messages shown in white are
the ones generated by our system, while the ones in yellow were
generated by the game engine. For messages with some spatial
meaning, the location related to it was rendered in the game mini-
map, as emphasized by the red arrow.

Table 3: Usefulness of the advisory system, according to the users’
opinions.

Evaluation Number of participants Percentage

Useful 0 0%
Mostly useful 6 85.7%
Indifferent 0 0%
Mostly useless 1 14.3%
Useless 0 0%

7 System evaluation

Some tests were designed to evaluate the advisory system’s per-
formance with regards to the quality and utility of the generated
tips. The objective of the tests was to evaluate if RTS game players
considered if an advisory system was useful and the tips generated
by our system were worthwhile. More specifically, the critical point
of the user evaluation was to know, qualitatively, the opinion of the
users with regards to the usefulness of the tips. To give objectivity
to the test, only users who already knew RTS games were selected
to playtest. That way, we could be sure the problems they could face
would be more related to the advisory system than to the interface
of the game.

The test consisted of letting the users play two matches of Wargus.
In both, the task to be performed by them was to try to win the game.
However, we made it clear to all users that the outcome of the match
did not matter for the test, and this objective was set only for the
users to have a clear goal. In one of the matches, the advisory system
was turned off, at the other, it was turned on, in this order.

The tests were performed in a laboratory specially prepared to per-
form user tests, and all commands sent to the game by the user
were recorded in Stratagus’ internal log format in case a replay was
needed. In total, seven users participated in the tests. The tests
consisted of an interview to know the user’s profile, followed by the
testing sessions and, then, the users were invited to fill out a form
with their opinions about the system.

All users that were submitted to the test were male, with a mean
age of 26, and standard deviation of 3.2 years. From the results of
the interview, we saw that most of the users considered themselves
with some ability in RTS games, and had the profile we looked for,
which means they played RTS games at least once and grasped the
involved concepts, this doesn’t mean they had to be good players.

Tables 3 to 10 summarize the answers given by the users at the
post-test survey. For the results presented in tables 3 and 4, we esti-

Table 4: Users’ opinions regarding the frequency of the tips. In
other words, given the frequency of the tip presentation, the users
were asked if they would change the tip frequency.

Evaluation Number of participants Percentage

Much less frequent 0 0%
Less frequent 3 42.8%
Perfect 3 42.8%
More frequent 1 14.3%
Much more frequent 0 0%

Table 5: Users’ opinions regarding the advisory system. If the users
thought the approach used was useful, they marked “Yes”, and “No”
otherwise.

Evaluation Number of participants Percentage

Yes 7 100%
No 0 0%

mate that the negative opinions are related to the fact that most tips
generated by our system are related to resource management, what
may have made them repetitive and, to some extent, inconvenient.
Similarly, even though there were some rules that encoded scouting
tips, those were triggered with a “good” frequency, and, when they
were triggered, the users were unable to perceive them.

Despite the negative opinions about the frequency of tips, users not
only considered them useful, as shown in table 3, but also considered
the approach taken valid (table 5). Some aspects of the system
need improvement, given that the advisory system, as the users
perceived it, concentrated its tips in resource management tips and
basic tactical tips (table 9). The most interesting topics for the
creation of new tips, according to the users, were in battle tactics,
base layout, and defense tactics (table 10), which indicates that the
users care about one of the most important aspects of the game: the
combat.

Regarding the speech synthesis system, user’s opinions indicate
that this approach was pleasant to them (table 6), even though their
opinions may have been divided between the synthesis, or not, of all
messages (table 7). Despite the slight preference for the synthesis of
all the messages, it is important to note that users were not subjected
to tests in which all the messages were synthesized and, judging by
the frequency of activation of certain branches of the tree during the
implementation, users would probably be annoyed by the messages.

The results shown in table 8 indicates that most users had not seen
systems similar to the one proposed in this paper. The ones that users
pointed out as similar were already discussed in this text: SimCity’s
board of advisors and Warcraft III.

Through the responses of users and their reactions during the tests,
we noticed that, for them, there is no clear distinction between

Table 6: Usefulness of speech synthesis for the users.

Evaluation Number of participants Percentage

Useful 2 28.6%
Mostly useful 3 42.9%
Indifferent 1 14.3%
Mostly useless 1 14.3%
Useless 0 0%

Table 7: Should all tips be synthesized? Users were asked to answer
“Yes” if they thought so and “No” otherwise.

Evaluation Number of participants Percentage

Yes 4 57.1%
No 3 42.9%

Table 9: Most useful tips according to the users. Users’ evaluation regarding the usefulness of the tips given the competencies of an RTS game.
Values sum more than 100% because people were able to select more than one option.

Evaluation Number of participants Percentage

Resource management 7 100%
Basic tactical tips 4 57.1%
Scouting 1 14.3%
Counter-strategy 0 0%

Table 10: Aspects of the game where more tips could be available. Given the set of tips generated, the users were invited to suggest where the
system could benefit of having more tips. Values sum more than 100% because people were able to select more than one option.

Evaluation Number of participants Percentage

Resource management 0 0%
Scouting 2 28.6%
Battle tactics 6 85.7%
Base layout tactics 5 71.4%
Defense tactics 4 57.1%
Counter-strategy 2 28.6%
Unit combinations for more powerful attacks 4 57.1%
How to invest resources 2 28.6%

Table 8: Users were asked to say if they knew any system similar to
the presented in this work and answered “Yes” if they knew them
and “No” otherwise.

Evaluation Number of participants Percentage

Yes 2 28.6%
No 5 71.4%

what would be tips on strategy (and therefore related to actions
in the game) and tips on the usability of the game interface and
its mechanics. As tips on the game’s interface weren’t part of the
work presented here, some users found themselves frustrated by this
design decision, mostly because of the lack of intimacy with the
Warcraft II interface.

Some aspects are difficult to separate, though. For example: when a
Lumber Mill is built near a forest and there are workers extracting
wood from this forest, the wood income ratio would be greater than
if the forest was farther. Even though this might be an obvious
conclusion to experience users, this is not for novices. Therefore,
different designers might come to different conclusions on what kind
of tips should be encoded.

Users were asked to suggest changes to the advisory system. Af-
ter analyzing their comments, we came to the conclusion that the
changes suggested by them are more related to having more compe-
tencies of the game contemplated than to architectural changes in the
advisory system, which might indicate that the current architecture
of the system was pleasant to the users.

In the current implementation, the advisory system has only two
options regarding the tips: they are either completely enabled or
completely disabled. Comments from users indicate it would be
interesting if the system had a greater level of granularity, allowing
tips to be enabled or disabled individually. In particular, a tip that
was enabled constantly, related to the existence of idle workers,
annoyed some players, confirming the pertinence of this suggestion.
The cause of the repetition comes from the structure of decision
trees, which trigger actions whenever their conditions are satisfied
and, therefore, it might be interesting to evaluate the effectiveness
of the system using other data structures.

Other suggestions given by the users were to encode tips that did
not leave the player in an idle state (and, therefore, in disadvantage
against a non-idle player), and a higher level of interactivity with
system, in a way that users could submit queries to the advisory
system. One common complaint was that users did not know how
to create some units, and wanted the system to tell them what to
do to achieve their objective. This is a pertinent suggestion and

Table 11: Points awarded to the player that destroyed an unit of the
given kind.

Unit Points Unit Points

Wall 1 Tower 95
Critter 1 Farm 100
Peasant 30 Lumber mill 150
Flying Machine 40 Runestone 150
Tanker 40 Barracks 160
Footman 50 Oil Rig 160
Transport 50 Blacksmith 170
Archer 60 Shipyard 170
Ranger 70 Foundry 200
Dwarves 100 Guard Tower 200
Knight 100 Refinery 200
Ballista 100 Town Hall 200
Mage 100 Stables 210
Demon 100 Inventor 230
Paladin 110 Church 240
Legendary Hero 120 Mage Tower 240
Submarine 120 Cannon Tower 250
Destroyer 150 Aviary 280
Gryphon 150 Keep 600
Battleship 300 Castle 1500

the usefulness of the advisory system would increase if it had this
feature.

7.1 User performance

As mentioned, all the tests were recorded using Stratagus’ internal
log format. Therefore, we were able to analyze the performance of
the players with and without the advisory system. As a performance
function, we used the score attribution system used by Warcraft II,
where each destroyed unit counted points to the player that destroyed
them. Table 11 shows the score earned by a player for each unit
destroyed.

For each test set, we plotted graphs that showed the performance
of the users using the aforementioned metric. Figure 6 shows the
performance of a specific user that had a performance similar to
other users. Figure 7 shows a graph with an atypical performance
plot. Without the system, the user lost, but a mere analysis of the
graph might lead one to think that he might have won it. The fact is
that the user built many defensive towers, and even when he had no
combat units, his towers continued to destroy his attackers, earning
him some more points.

0 500 1000 1500 2000 2500 3000 3500
Time in the game (s)

−5000

0

5000

10000

15000

Sc
or
e
of

th
e
pl
ay
er

su
bt
ra
ct
ed

by
th
e
on

e
of

its
riv

al

Performance of the player with and without the advisory system
Without the advisory system
With the advisory system

Figure 6: Typical performance of a player with and without the
advisory system. The value shown in the vertical axis is the difference
between the user points and of that of his (computer) opponent and
the plateaus show time intervals in which no combat occurred.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time in the game (s)

−2000

0

2000

4000

6000

8000

10000

12000

Sc
or
e
of

th
e
pl
ay
er

su
bt
ra
ct
ed

by
th
e
on

e
of

its
riv

al

Performance of the player with and without the advisory system
Without the advisory system
With the advisory system

Figure 7: “Anomalous” performance of a player with and without
the advisory system. Even with his defeat without using the system,
his performance was good. The value shown in the vertical axis is
the difference between the user points and of that of his (computer)
opponent and the plateaus show time intervals in which no combat
occurred.

8 Conclusion

In this paper we presented an expert system designed to help players
in RTS games through the display of tactical and strategical tips. Ba-
sically, the system evaluates the game state following pre-specified
metrics and traverse a decision tree built upon information available
from strategy guides, giving the user some advice about the actions
to be taken. Differently from some approaches used in games, one
advantage of the proposed system is that is does not force the user
to take specific actions. It works as an advisory system, in which
advices can be taken at user discretion. Several experiments were
performed to evaluate the system. A group of users played a game
with and without the system and, in general, liked the approach,
also giving valuable insights for its improvement. Performance tests
were also executed and showed that the system does not compromise
performance. Overall, we can conclude that this type of system has
a good potential to be used in commercial games.

There are several paths for future work. First of all, some tuning
is necessary to reduce the frequency of some tips which can be
annoying to the user. A graphical interface allowing users to choose
the content and frequency of the tips is in our plans. Also, the
possibility of including new tips and conditions on the fly would be
interesting for the system. In fact, a very promising, yet challenging,

approach would be the use of machine learning and data mining
techniques to learn from other games and infer tactics and strategies
for the system, instead of relying only on precompiled information
from the strategy guides. This would make the system more flexible
and usable in different scenarios.

Acknowledgments

The authors would like to thank the financial support provided by
CNPq, CAPES, and Fapemig in the development of this work.

References

A L C Á Z A R , V. , B O R R A J O , D . , A N D L I N A R E S , C . 2008.
Modelling a RTS planning domain with Cost Conversion and
rewards. In ECAI, A. Botea and C. L. López, Eds.

B A U M G A R T E N , R . , C O LT O N , S . , A N D M O R R I S , M . 2009.
Combining ai methods for learning bots in a Real-Time Strategy
Game. International Journal of Computer Games Technology
2009, 10.

B L A C K , A . W. , A N D TAY L O R , P. A . 1997. The Festi-
val Speech Synthesis System: System documentation. Tech.
Rep. HCRC/TR-83, Human Communciation Research Cen-
tre, University of Edinburgh, Scotland, UK. Disponı́vel em
http://www.cstr.ed.ac.uk/projects/festival.html.

B L I Z Z A R D , 2010. WarcraftTM II strategy.
http://classic.battle.net/war2/strategy.shtml, Abril. Acessado em
20 de abril de 2010.

B U R O , M . 2002. ORTS: A hack-free RTS game environment. In
Proceedings of the International Computers and Games Confer-
ence.

B U R O , M . 2004. Call for AI research in RTS games. In Proceed-
ings of the 4th Workshop on Challenges in Game AI.

D E F R E I TA S C U N H A , R . L . 2010. Um sistema de apoio ao
jogador para jogos de estratégia em tempo real. Master’s thesis,
Universidade Federal de Minas Gerais.

H A G E L B Ä C K , J . , A N D J O H A N S S O N , S . J . 2008. Using
multi-agent potential fields in real-time strategy games. In AA-
MAS (2), IFAAMAS, L. Padgham, D. C. Parkes, J. Müller, and
S. Parsons, Eds., 631–638.

H O A N G , H . , L E E - U R B A N , S . , A N D M U Ñ O Z - AV I L A , H .
2005. Hierarchical plan representations for encoding strategic
game AI. In Proceedings of the Artificial Intelligence and Inter-
active Digital Entertainment Conference, AAAI Press.

L E E - U R B A N , S . , PA R K E R , A . , K U T E R , U . , M U N O Z -
AV I L A , H . , A N D N A U , D . 2007. Transfer learning of hierar-
chical task-network planning methods in a Real-Time Strategy
games. In Proceedings of the Workshop on Artificial Intelligence
Planning and Learning.

M C C O Y, J . , A N D M AT E A S , M . 2008. An integrated agent for
playing real-time strategy games. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence.

P O N S E N , M . J . , L E E - U R B A N , S . , M U Ñ O Z - AV I L A , H . ,
A H A , D . W. , A N D M O L I N E A U X , M . 2005. Stratagus: An
open-source game engine for research in real-time strategy games.
Tech. rep., Navy Center for Naval Research Laboratory.

P O N S E N , M . , M U N O Z - AV I L A , H . , S P R O N C K , P. , A N D
A H A , D . W. 2006. Automatically generating game tactics
through evolutionary learning. AI Magazine 27, 3, 75–84.

W E B E R , B . G . , A N D M AT E A S , M . 2009. A data mining
approach to strategy prediction. In Proceedings of the IEEE
Symposium on Computational Intelligence & Games, P. L. Lanzi,
Ed., IEEE.

	1 Introduction
	2 Related work
	3 RTS Gameplay
	3.1 Strategy
	3.2 Tactics
	3.3 Resource extraction
	3.4 Production
	3.5 Scouting
	3.6 Diplomacy

	4 Overall design
	5 Engine selection
	5.1 Wargus

	6 Engine instrumentation
	6.1 Information gathering
	6.2 Advisory system
	6.3 Notification system

	7 System evaluation
	7.1 User performance

	8 Conclusion

