
Exploiting User Patience for Scaling Resource
Capacity in Cloud Services

Renato L. F. Cunha, Marcos D. Assunção, Carlos Cardonha, Marco A. S. Netto
IBM Research Brazil

Abstract—An important feature of cloud computing is its
elasticity, that is, the ability to have resource capacity dynamically
modified according to the current system load. Auto-scaling is
challenging because it must account for two conflicting objectives:
minimising system capacity available to users and maximising
QoS, which typically translates to short response times. Current
auto-scaling techniques are based solely on load forecasts and
ignore the perception that users have from cloud services. As a
consequence, providers tend to provision a volume of resources
that is significantly larger than necessary to keep users satisfied.
In this article, we propose a scheduling algorithm and an auto-
scaling triggering technique that explore user patience in order
to identify critical times when auto-scaling is needed and the
appropriate volume of capacity by which the cloud platform
should either extend or shrink. The proposed technique assists
service providers in reducing costs related to resource allocation
while keeping the same QoS to users. Our experiments show that
it is possible to reduce resource-hour by up to approximately 8%
compared to auto-scaling based on system utilisation.

I. INTRODUCTION

Several service providers rely on public clouds to deliver a
range of IT resources—including processing, storage, network,
and software—to end users and organisations of various types
and sizes. The benefits of a cloud solution derive from
economies of scale, possibility to deploy applications globally,
reduction of upfront investment in IT infrastructure, and the
adoption of a pay-as-you-go model, where clients are charged
only for the resources they consume. The elasticity of the
cloud enables organisations to change infrastructure capacity
on demand and avoid tasks that are necessary when resources
are managed locally, such as procurement of new hardware and
software. Elasticity is an appealing feature, but it is important
to remark that deciding when and by how much the system
capacity should be modified dynamically is a challenging task.

Current auto-scaling techniques monitor and predict system
utilisation to trigger actions when the use of certain target
resources, such as CPU, memory, and network bandwidth,
exceed pre-determined thresholds. However, these approaches
are unsatisfactory, since they may lead to unnecessarily high
resource allocation operations that may not even be able
to reduce the perceived degradation in QoS. This situation
typically occurs when the load is bursty—as predictions are
less accurate—and during retry periods, when users resume
service use after a short period of quality degradation1.

1Scryer Auto-scaling: http://techblog.netflix.com/2013/11/scryer-netflixs-
predictive-auto-scaling.html

Another challenging aspect for the specification of efficient
auto-scaling techniques is the identification of adequate scale-
in and scale-out step sizes, i.e., the number of resources by
which the cloud should shrink and expand, respectively. For
example, if step sizes in scale-out and scale-in operations
are too small or too large, respectively, response times may
increase and the perceived QoS may reach unacceptably low
levels. Conversely, if step sizes in scale-out and scale-in
operations are too large or too small, respectively, utilisation
levels may become low, which basically results in economic
losses.

Existing work has overseen the fact that users have het-
erogeneous QoS requirements, interact with cloud services
in different manners, have distinct expectations on response
time, and varying patience. By exploiting these facts, it is
possible to delay (minor delays [1]) handling service requests
from patient users with low QoS demands and prioritise those
submitted by individuals with less patience. For both types of
users, the service would meet response time expectations and
could eventually lead to significant reductions in the number
of resources employed to service user requests. Our previous
work [2], [3] has shown the benefits of such strategies, but
their implications on auto-scaling decisions remained open.

In this paper we propose a scheduling algorithm and an
auto-scaling technique that explore heterogeneity of user pa-
tience in order to perform better auto-scaling decisions. The
key contributions of this paper are:

• Identification of opportunities and challenges of auto-
scaling considering different user expectation and pa-
tience levels (§ II);

• A patience-based scheduling algorithm and a technique
for deciding when auto-scaling should be activated (§ III);

• Experiments that show reduction of up to 8% of resource-
hour compared to auto-scaling based on system utilisation
information (§ IV).

II. PROBLEM DESCRIPTION

This paper considers the case of a service provider that auto-
scales the pool of resources allocated to a service according
to budget and request response time constraints. As illustrated
in Figure 1, the scenario comprises: users accessing a service;
a service provider; and a cloud infrastructure provider. The
literature shows that users have different expectations on

SERVICE
PROVIDER

CLOUD
INFRASTRUCTURE

PROVIDER

- Expected QoS
- Actual User Patience

USERS

- Elastic Resource Pool
- Delivered QoS
- Estimated User Patience
- Resource Auto-scaling Decisions

- Resource Pool

Goal: How Can the Service Provider
Minimise Resource/Hour Usage and
Keep the Overall User Experience?

Fig. 1. Scenario: A service provider wishes to maximise overall user
experience via optimal resource auto-scaling decisions considering factors
such as (i) users’ patience level; (ii) delivered response time; and (iii) resource
pool allocated from a cloud infrastructure provider.

service quality, hence resulting in heterogeneous levels of
patience when faced with delays and quality degradation. The
questions we set ourselves to address are therefore: (i) how
to determine critical times when auto-scaling is necessary or
when it can be avoided by exploiting information about users’
patience; and (ii) how large the scale steps should be.

There is no distinction between standard and premium users,
but we assume that expectations on response time (QoS) and
level of patience may vary from user to user. It is easy to
see why this assumption is realistic by considering a practical
example. While users expect to get results from Web searches
in a couple of seconds, there is a larger tolerance margin from
those performing large-scale graph mining, which can take
from minutes to hours.

We consider the scenario of a cloud service that is designed
to deliver a given response time to users, and attempts to
perform auto-scaling decisions based on estimations of future
workload and user patience. It allocates resources from a cloud
infrastructure where machines typically are characterised by
their cost and performance; we consider that resources are
pairwise indistinguishable (and, therefore, have the same cost
and performance characteristics).

Differences between the level of expectation and the actual
response times for submitted requests have an impact in the
users’ patience with a service. The effect of a single interaction
persists with decreasing importance over time. We model the
variation of user patience as a function of its request QoS,
which is given by the ratio between expected and actual
response times. Inspired by prospect theory [4], we assume
that the impact of delays is higher than that of fast responses
(see Figure 2). Finally, we assume that a user will find the QoS
unacceptable if her patience goes below her personal lower
bound.

III. SCHEDULING AND MODELLING

In this section, we present a formal description of the
problem and describe both the scheduling algorithms and the
auto-scaling techniques employed in our experiments.

Patience (d)

User experience (ue)

1 2

-2 -1

Fig. 2. Using prospect theory [4] to model variations on user patience as a
function of the request QoS.

We propose a new scheduling algorithm that takes user
patience into account. It serves requests according to the
number of times that their respective users would tolerate
long response delays. The intuition behind it is simple: if the
user submitting job j1 has a larger tolerance than the user
submitting job j2, then j2 should be scheduled first.

For the auto-scaling operations, we investigate two strate-
gies. The first one is solely based on system utilisation, but we
present a formula that determines an upper bound on the vol-
ume by which the service capacity should increase or shrink,
avoiding the invocation of several auto-scaling operations in a
row. Finally, the second strategy extends the first by employing
user patience in order to identify an appropriate step level.

A. Mathematical Description

We consider a discrete-time state-space model, so all the
time-related values are integer numbers belonging to T ⊆ N.

We are given a set U of users, a set J of incoming jobs,
and a set M of machines that can be provisioned and used
to service these requests. The ownership relation between U
and J is given by the function o : J → U , that is, job j was
submitted by user u(j).

In each moment t ∈ T , M can be partitioned in sets Ma,t

and Mn,t containing the machines that are currently active
and inactive, respectively. We denote |M| by m and |Ma,t|
by mt. The system always has to keep a minimum number
b > 0 of active machines, i.e., |Ma,t| ≥ b for every t in T .

We consider scenarios where jobs have an average process-
ing time ρ ∈ N. Moreover, we assume that, after submitting
job j, the amount of time user u(j) is expecting to wait
before receiving the results is given by ρβu(j), where βu(j)
is a multiplicative factor that may differ from user to user.
The response time of the provider for job j is denoted by rj .

For each u ∈ U and t ∈ T , φt,u ∈ R+ denotes u’s patience
at instant t. If φt,u goes below a certain threshold τu ∈ [0, 1),
we say that u is unhappy. User patience changes over time

according to the QoS being delivered by the provider. More
precisely, φt,u(j) improves if rj < ρjβu(j) and decreases
otherwise.

Based on the ideas introduced by Prospect Theory, where
the sense of losing an opportunity has higher impact in a user’s
patience than the sense of gaining, we define the behaviour
of φt,u as follows. First, we assume that the user reaction after
submitting task j and obtaining response time rj is given by

xj =
ρβu(j)

rj
,

where xj > 1 indicates that the provider’s answer to j came
faster than expected and xj < 1 accounts for situations where
the response time was slower. In order to consider the different
user reactions suggested by prospect theory, we assume that
the value φt,u changes from φt,u after the submission of j as
follows:

φt,u =

{
α1,uφt−1,u + (1− α1,u)xj , if xj > 1

α2,uφt−1,u + (1− α2,u)xj , else.

In both cases, we use exponential smoothing to update the
patience level. In order to make the immediate impact of
slower response times higher than that of faster ones, we have
α1,u > α2,u. Moreover, different users may have different
values of α1,u and α2,u.

The main goal of a provider is to deliver acceptable response
times and to keep the number of active resources at a min-
imum. More formally, we have a multi-criteria optimization
problem where we want to minimise

∑
t∈T |Mn,i|, which

denotes the sum of provisioned machines over time, and to
maximise

∑
(t,u)∈T ×U φt,u, which is equal to the sum of

patience levels for all users over time.

B. Scheduling Algorithms

In our computational experiments, we employed the follow-
ing scheduling strategies.

1) FIFO Scheduling: First-in, First-out (FIFO) is one of
the oldest and most frequently used scheduling strategies. It
focuses mainly on fairness, as it schedules jobs to machines
according to their arrival order.

2) Lowest Patience First Scheduling: The Lowest Patience
First (LPF) algorithm orders arriving jobs according to the
patience level of their respective users as follows. If, at
instant t, user u submits job j and xj < 1, we have

φt+1,u = α1φt,u + (1− α1)xj ≥ α1φt,u,

that is, since

lim
rj→∞

ρβu
rj

= 0,

φt+1,u becomes closer to α1φt,u as rj → ∞, and therefore
α1φt,u is a lower bound of φt+1,u whose accuracy grows with

the system load. Using this bound, we can estimate the value
kj ∈ N for which φt+kj ,u ≤ τu as follows:

α
kj
1 φt,u ≥ τu

α
kj
1 ≥ τu

φt,u

kj ≥ logα1

(
τu
φt,u

)
.

Value kj indicates the number of submissions for which u(j)
will tolerate a bad QoS before having τu(j) surpassed.

LPF sorts the jobs in the scheduling queue according to kj .
In order to avoid starvation, LPF sets kj to zero if job j is
waiting for a period of time that is at least twice as large as
the current average response time.

C. Auto-scaling Triggering

The scaling strategies presented here employ resource util-
isation as a trigger for deciding on scale-out and scale-in
operations. The scheduler computes the resource utilisation
periodically, maintaining a window with the past w mea-
surements. Upper and lower thresholds define the interval
of utilisation levels that are considered normal. After each
measurement, the scheduler obtains a utilisation forecast for
the next time interval using weighted exponential smoothing.
If the past u measurements and the forecast are below (above)
the lower (upper) threshold, the scheduler triggers a scale-in
(scale-out) operation.

In order to decide the number of resources that should be
released or allocated from the cloud, we propose the following
auto-scaling strategies.

1) Utilisation-based Auto-scaling Triggering: Let Wt be
the volume of machine utilisation at time t. The current system
utilisation is estimated as Wt

mt
.

In the Utilisation-based Auto-scaling Triggering (TU)
strategy, the provider sets parameters H and L, 0 ≤ L ≤
H ≤ 1, indicating utilisation thresholds according to which
machines are activated and deactivated, respectively. When
choosing the values for these parameters, an administrator
wants to avoid situations where the system performs conflict-
ing auto scaling operations in consecutive steps (e.g., scale
out takes place immediately after a scale in operation). This
situation happens if Wt

mt
> H =⇒ Wt > Hmt and

Wt

mt+λm
< L =⇒ Wt < L(mt + λm) hold simultaneously.

In order to avoid this issue, the following inequality must be
valid:

Hmt > L(mt + λm)
H

L
>

mt + λm

mt

H

L
> 1 +

λm

mt
.

Analogously, it is not desirable to have a situation where the
system deactivates machines in one step and activates in the

following step under the same conditions of system utilisation.
Because b > 0, we know that mt−λm should be greater than
zero. Therefore, this situation will happen if Wt

mt
< L =⇒

Wt < Lmt and Wt

mt−λm > H =⇒ Wt > H(mt − λm) hold
simultaneously. This problem is avoided if

H

L
> 1 +

λm

mt − λm
.

From both inequalities, it follows that HL ≥ 1+ λm
mt

and H
L ≥

1 + λm
mt−λm . But we have that

λm

mt − λm
>

λm

mt

mt > mt − λm
λm > 0,

so both inequalities are satisfied if H
L ≥ 1+ λm

mt−λm . Because
we are assuming that the system provider will keep at least b
machines active, we have that mt − λm ≥ b. Therefore, the
parameters have to obey the relation below:

H

L
> 1 +

λm

b
. (1)

From the inequality above, one derives an upper bound for
the step size s = λm. This value is typically high, so the
administrator of a cloud service can choose a multiplicative
factor γ ∈ [0, 1] indicating the strategy’s “aggressiveness”.
The step size will be of s(1 − γ) and of sγ resources for
scale-in and scale-out operations, respectively.

2) Utilisation- and Patience-based Auto-scaling Triggering:
In the TU strategy, γ is fixed, so the cloud system will
always have the same behaviour (aggressive or conservative).
Moreover, the perception that users have from the current
QoS provided by the cloud server is ignored. The Utilisation-
based and Patience-based Auto-scaling Triggering (TUP)
strategy leverages TU by employing user patience in order to
set dynamically the value of γ.

Let K̂t denote the average value of kj for all the jobs
in the server (either enqueued or in execution). Whenever
the system decides that an auto-scaling operation should be
performed, a sequence S containing the last k averages K̂t is
created and has some percentage of its largest and smallest
values removed. Finally, from the remaining elements of S,
the system takes the largest value K. Finally, the value of γ
will be K̂t

K and 1− K̂t

K for scale out and scale in operations,
respectively.

Basically, TUP was designed to adapt the system behaviour
according to the current average patience level of users.
Namely, if K̂t is high, a more aggressive policy is acceptable.
Conversely, if K̂t is low, a conservative approach could
support the improvement of QoS.

IV. EVALUATION

We conducted extensive computational experiments in order
to verify whether the proposed technique for auto-scaling can

reduce the number of resources allocated by exploiting the
heterogeneity in user patience. We evaluated the following
techniques for task scheduling and auto-scaling triggering:

• FIFO+TU: First-In-First-Out scheduling with auto-
scaling considering only resource utilisation;

• LPF+TU: LPF scheduling with auto-scaling considering
resource utilisation;

• LPF+TUP: LPF scheduling with auto-scaling consider-
ing resource utilisation, and the users’ patience to define
the resource step size of scale-out and scale-in operations.

We examined the trade-off between patience and resource
allocation considering the following metrics:

• Percentage of dissatisfactions: Percentage of jobs j for
which the patience of their respective users u(j) were
below τu(j) after the execution of j.

• Allocated resource-time: Resource capacity—in ma-
chine seconds—allocated to serve user requests.

The rest of this section describes the experimental set-up
and the analysis of the obtained results.

A. Experimental Set-up

A discrete event simulator built in house was used to
evaluate the performance of the auto-scaling techniques. To
model the load of the service provider, we crafted two types
of workloads with variable numbers of users over a 24-hour
period as shown in Figure. 3. The rationale behind these
workloads is described as follows:

• Normal day: consists of small peaks of utilisation during
the start, middle, and end of work hours. Outside these
intervals, but still in work hours, this workload remains
around the peak values, while outside the working hours
it goes down significantly.

• Peaky day: consists of tipping workload peaks, a typical
scenario in corporations near the end of quarters and
semesters. The configuration is used to test the solution’s
behaviour handling stress situations.

Jobs have an execution time of 10 seconds, whereas a user’s
expectation on the response time of a job j is drawn uniformly
from the average job length to a positive multiplicative factor
of job length (i.e. ρβo(j,t) defined in Section III is 1.2).
For users in the system, the job inter-arrival time is drawn
uniformly from 0 to 100 seconds.

We vary the maximum number of resources that can be
allocated from the cloud from 162 to 180 and set the initial
capacity to 25% of the maximum made available by the
provider to the target customer. The lower and upper target
thresholds for resource utilisation (i.e. L and H) are 40% and
70% respectively.

0 3 6 9 12 15 18 21 24

Hour

10

20

30

40

50

60

70

80

90
T

o
ta

l
sy

st
em

ut
ili

sa
ti

o
n

(%
)

Scenario
Normal Peaky

Fig. 3. The two types of workloads. For each hour in a given day, the load
found in each workload represents a percentage of the maximum number of
users that could be present in the system. For example, suppose nu represents
the maximum possible number of users found in the system. If nu = 100,
in hour 0 of the “Normal” workload, there are 30 users in the system. The
number is approximate as we added a random variation of 5%.

B. Result Analysis

Scheduling Techniques. We first evaluate the percentage of
dissatisfactions under both FIFO+TU and LPF+TU tech-
niques. Figures 4 and 5 present the results for this metric under
normal and peaky workloads respectively. Peaky produces
higher percentage of dissatisfactions due to abrupt increases in
system utilisation. Although FIFO+TU is expected to provide
fairness regarding response time and consequently a balance
in user satisfaction, overall LPF+TU was considerably better
according to the optimisation metric. LPF+TU brought more
benefit compared to FIFO+TU under normal workload be-
cause the scheduler had more margin of manoeuvre due to the
higher number of patient users whose satisfaction level could
be slightly reduced. Finally, the same auto-scaling technique
was employed in both configurations, so resource consumption
was equal.

Auto-scaling Decisions. Figures 6 and 7 show percentage of
dissatisfactions for LPF+TU and LPF+TUP under normal
and peaky workloads, respectively. We observe that overall,
both auto-scaling techniques perform equally considering per-
centage of dissatisfactions. For a few scenarios, such as with
162 (Normal) and 164 (Peaky) resources, performing scaling
based on utilisation is marginally better than using utilisation
and patience, a phenomenon that the number of resources
allocated by TUP may be too low for situations where system
load grows abruptly, leading to bad QoS.

With respect to allocated resource-time, LPF+TUP was
superior to LPF+TU. LPF+TUP reduces the number of
resources because the scheduler checks whether average user
patience is still under control before taking a scale-out deci-
sion; if this is the case, the scheduler does not allocate addi-

162 164 166 168 170 172 174 176 178 180

Resources

0

2

4

6

8

10

12

14

16

U
se

r
di

ss
at

is
fa

ct
io

n
(%

)

FIFO+TU LPF+TU

User dissatisfaction on the normal workload

Fig. 4. Percentage of dissatisfaction for FIFO+TU and LPF+TU with load
based auto-scaling trigger on normal workload.

162 164 166 168 170 172 174 176 178 180

Resources

0

5

10

15

20

25

U
se

r
di

ss
at

is
fa

ct
io

n
(%

)

FIFO+TU LPF+TU

User dissatisfaction on the peaky workload

Fig. 5. Percentage of dissatisfaction for FIFO+TU and LPF+TU with load
based auto-scaling trigger on Peaky workload.

tional resources to handle the load. Similarly, if the number
of resources can be decreased and the average patience is
acceptable, it removes more resources than LPF-TU. Figures
8 and 9 show the number of resources allocated over time for
LPF+TU and LPF+TUP respectively under peaky workload,
and similar results were obtained for the normal workload.
Dashed rectangles show the main differences between the two
approaches. Finally, Figures 10 and 11 show that LPF-TUP
beats LPF-TU in savings on the overall allocated resource-
time by up to 8% for peaky and 4% for normal workloads,
respectively.

V. RELATED WORK

Projects related to our work fall into categories of schedul-
ing, user behaviour, and cloud computing auto-scaling.

162 164 166 168 170 172 174 176 178 180

Resources

0

1

2

3

4

5

6
U

se
r

di
ss

at
is

fa
ct

io
n

(%
)

LPF+TU LPF+TUP

User dissatisfaction on the normal workload

Fig. 6. Percentage of dissatisfaction for LPF+TU and LPF+TUP with load
based auto-scaling trigger on Normal workload.

162 164 166 168 170 172 174 176 178 180

Resources

0

2

4

6

8

10

12

14

U
se

r
di

ss
at

is
fa

ct
io

n
(%

)

LPF+TU LPF+TUP

User dissatisfaction on the peaky workload

Fig. 7. Percentage of dissatisfaction for LPF+TU and LPF+TUP with load
based auto-scaling trigger on Peaky workload.

Scheduling is a well-studied topic in several domains
for which the number of theoretical problems, solution ap-
proaches, and practical applications is considerably large [5],
[6]. Commonly used algorithms include FIFO, priority-based,
deadline-driven, hybrid approaches that use backfilling tech-
niques [7], among others [8], [9]. In addition to priorities
and deadlines, other factors have been considered, such as
fairness [10], energy-consumption [11], and context-awareness
[12]. Moreover, utility functions were used to model how the
importance of results to users varies over time [13], [14].

User behaviour has been explored for optimising resource
management in the context of web caching and page pre-
fetching [15], [16], [17], [18], [19], [20]. The goal in these
works is to understand how users access web pages, to
investigate their tolerance level on delays, and to pre-fetch or

Fig. 8. Number of resources over time for LPF+TU auto-scaling approach
on Peaky workload.

Fig. 9. Number of resources over time for LPF+TUP auto-scaling approach
on Peaky workload.

modify page content to enhance user experience. Techniques in
this area focus mostly on web content and minimising response
time of user requests. Service research has also investigated
the impact of delays in users’ behaviour. For instance, Taylor
[21] described the concept of delays and surveyed passengers
affected by delayed flights to test their hypotheses. Brown
et al. [22] and Gans et al. [23] investigated the impact
of service delays in call centres. In behavioural economics,
Kahneman and Tversky [4] introduced prospect theory to
model how people make choices in situations that involve
risk or uncertainty. Netto et al. [3] introduced a scheduling
strategy that considers information on how fast users consume
results generated by service providers. Our previous work [2]
investigated the scheduling of user requests considering their
patience and expectations, but with no auto-scaling of cloud
resources.

162 164 166 168 170 172 174 176 178 180

Resources

0.0

0.2

0.4

0.6

0.8

1.0
R

es
o

ur
ce

-t
im

e
us

ag
e

(s
)

×107 LPF+TU LPF+TUP

Resource-time usage on the normal workload

Fig. 10. Comparison of the resource-time usage for both LPF+TU and
LPF+TUP on the Normal workload.

162 164 166 168 170 172 174 176 178 180

Resources

0

1

2

3

4

5

6

7

8

9

R
es

o
ur

ce
-t

im
e

us
ag

e
(s

)

×106 LPF+TU LPF+TUP

Resource-time usage on the peaky workload

Fig. 11. Comparison of the resource-time usage for both LPF+TU and
LPF+TUP on the Peaky workload.

Shen et al. [24] presented a system to automate elastic
resource scaling for cloud computing environments. Their
system does not require prior knowledge about the applications
running in the cloud. Other projects consider auto-scaling
in different scenarios, such as auto-scaling for MapReduce
applications [25], [26], vertical versus horizontal auto-scaling
[27], operational costs [28], and integer model based auto-
scaling [29] .

Unlike previous work, our proposed auto-scaling technique
considers information on user patience while interacting with
the service provider.

VI. CONCLUSIONS

This paper introduced a scheduling algorithm and an auto-
scaling technique based on user patience. Traditional resource
allocation and auto-scaling techniques are based on load

and/or utilisation information, and one shortcoming of these
approaches is that actual users’ needs with regards to their ex-
pectations and patience levels are ignored. As a consequence,
they over-provision resources in situations where that is not
strictly needed.

We modelled user patience based on prospect theory and
performed extensive experiments considering FIFO and Low-
est Patience First scheduling combined with auto-scaling based
on utilisation level. FIFO is a scheduling strategy that brings
several fairness benefits, which can potentially balance quality
of service among users of a cloud service. However, it has
limitations on understanding individual user expectations and
patience. Our results show that if this aspect is to be taken into
account, Lowest Patience First scheduling is clearly better.

We then evaluated how auto-scaling operations that con-
sider utilisation and patience would benefit users and cloud
providers. The main conclusion is that the proposed auto-
scaling trigger has great potential to reduce resource capacity
without impacting negatively in the users’ satisfaction. Even
though this brings benefits mainly to cloud providers, even-
tually such benefits can be brought to users in the form of
reduced prices. The method by which this benefit is achieved
comes from the understanding of how auto-scaling operations
can be further tuned with the verification of user patience and
how users tolerate eventual drops in QoS.

We believe that the proposed technique fills an existing gap
in the literature. Moreover, as sensors become more pervasive,
factors that influence users’ patience and needs are starting to
be better understood. On the top of this data, it will certainly
be possible to specialize and improve the techniques presented
in this work.

REFERENCES

[1] J. Ramsay, A. Barbesi, and J. Preece, “A psychological
investigation of long retrieval times on the world wide
web,” Interacting with computers, vol. 10, no. 1, pp. 77–
86, 1998.

[2] C. Cardonha, M. D. Assunção, M. A. S. Netto, R. L. F.
Cunha, and C. Queiroz, “Patience-aware scheduling for
cloud services: Freeing users from the chains of bore-
dom,” in Proc. of the 11th International Conference on
Service Oriented Computing (ICSOC’13), 2013.

[3] M. A. S. Netto et al., “Leveraging attention scarcity to
improve the overall user experience of cloud services,”
in Proc. of the Int. Conf. on Network and Service
Management (CNSM’13), 2013.

[4] D. Kahneman and A. Tversky, “Prospect theory: An
analysis of decision under risk,” Econometrica: Journal
of the Econometric Society, pp. 263–291, 1979.

[5] J. Blazewicz, K. Ecke, G. Schmidt, and J. Weglarz,
Scheduling in Computer and Manufacturing Systems,
2nd ed., 1994.

[6] M. L. Pinedo, Planning and Scheduling in Manufacturing
and Services, 2nd ed., 2007.

[7] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfill-
ing using system-generated predictions rather than user
runtime estimates,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 6, pp. 789–803, 2007.

[8] T. D. Braun et al., “A comparison of eleven static
heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems,” Journal
of Parallel and Distributed computing, 2001.

[9] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong, “Theory and practice in parallel job
scheduling,” in Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP’97), 1997.

[10] N. D. Doulamis, A. D. Doulamis, E. A. Varvarigos, and
T. A. Varvarigou, “Fair scheduling algorithms in grids,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 11, pp. 1630–1648, 2007.

[11] J.-F. Pineau, Y. Robert, and F. Vivien, “Energy-aware
scheduling of bag-of-tasks applications on master–
worker platforms,” Concurrency and Computation: Prac-
tice and Experience, vol. 23, no. 2, pp. 145–157, 2011.

[12] M. D. Assunção et al., “Context-aware job scheduling
for cloud computing environments,” in Proceedings of
the 5th IEEE Int. Conf. on Utility and Cloud Computing
(UCC), 2012.

[13] C. B. Lee and A. Snavely, “Precise and realistic util-
ity functions for user-centric performance analysis of
schedulers,” in Proceedings of the Int. Symp. on High-
Performance Distributed Computing (HPDC’07), 2007.

[14] A. AuYoung et al., “Service contracts and aggregate
utility functions,” in 15th IEEE Int. Symp. on High
Performance Distributed Computing (HPDC’06), 2006.

[15] D. F. Galletta, R. M. Henry, S. McCoy, and P. Polak,
“Web site delays: How tolerant are users?” Journal of
the Association for Information Systems, vol. 5, no. 1,
pp. 1–28, 2004.

[16] F. Alt, A. Sahami Shirazi, A. Schmidt, and R. Atterer,
“Bridging waiting times on web pages,” in 14th Int. Conf.
on Human-computer interaction with mobile devices and
services (MobileHCI’12). New York, NY, USA: ACM,
2012, pp. 305–308.

[17] R. Atterer, M. Wnuk, and A. Schmidt, “Knowing the
user’s every move: user activity tracking for website
usability evaluation and implicit interaction,” in 15th Int.
Conf. on World Wide Web (WWW’06). New York, NY,
USA: ACM, 2006, pp. 203–212.

[18] C. R. Cunha and C. F. B. Jaccoud, “Determining www
user’s next access and its application to pre-fetching,”
in 2nd IEEE Symp. on Computers and Communications

(ISCC ’97), Washington, DC, USA, 1997, pp. 6–.
[19] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating

user-perceived quality into web server design,” Computer
Networks, vol. 33, no. 1, pp. 1–16, 2000.

[20] A. Bouch, A. Kuchinsky, and N. Bhatti, “Quality is in
the eye of the beholder: meeting users’ requirements for
internet quality of service,” in Proceedings of the SIGCHI
conference on Human factors in computing systems.
ACM, 2000, pp. 297–304.

[21] S. Taylor, “Waiting for service: the relationship between
delays and evaluations of service,” The Journal of Mar-
keting, pp. 56–69, 1994.

[22] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen,
S. Zeltyn, and L. Zhao, “Statistical analysis of a tele-
phone call center: A queueing-science perspective,” Jour-
nal of the American Statistical Association, vol. 100, pp.
36–50, 2005.

[23] N. Gans, G. Koole, and A. Mandelbaum, “Telephone call
centers: Tutorial, review, and research prospects,” Man-
ufacturing & Service Operations Management, vol. 5,
no. 2, pp. 79–141, 2003.

[24] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:
elastic resource scaling for multi-tenant cloud systems,”
in Proc. of the 2nd ACM Symposium on Cloud Comput-
ing. ACM, 2011, p. 5.

[25] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads,” Proc. VLDB Endow., 2012.

[26] Z. Fadika and M. Govindaraju, “DELMA: Dynamically
ELastic MapReduce Framework for CPU-Intensive Ap-
plications,” in Proc. of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
Grid’11), 2011, pp. 454–463.

[27] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth,
“A virtual machine re-packing approach to the horizontal
vs. vertical elasticity trade-off for cloud autoscaling,”
in Proc. of the ACM Cloud and Autonomic Computing
Conference (CAC’13). ACM, 2013.

[28] M. Mao and M. Humphrey, “Auto-scaling to minimize
cost and meet application deadlines in cloud workflows,”
in Proc. of the Int. Conf. for High Performance Com-
puting, Networking, Storage and Analysis (SC). IEEE,
2011, pp. 1–12.

[29] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling
with deadline and budget constraints,” in Proc. of the
11th IEEE/ACM International Conference on Grid Com-
puting (GRID). IEEE/ACM, 2010, pp. 41–48.

